Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e25327, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38380045

RESUMO

The study aimed to assess the impact of different combinations of cultivar mixtures on finger millet blast epidemics without affecting yield. The research employed Disease Progress Curves (DPCs) such as AUDPC, rAUDPC, and sAUDPC to evaluate leaf, neck and finger blast epidemics' severity at various time intervals. Treatments involved mixtures of pre-released cultures and commercial varieties, combined with resistant cultivars in ratios of 1:1 and 2:1 to combat blast disease. These mixtures were compared with monoculture performances (resistant and susceptible checks) and fungicide treatments. The mixture of pre-released cultures (TNEc 1285 + TNEc 1294 + TNEc 1310) combined with the resistant cultivar GE4449 at a 1:1 ratio demonstrated the most significant impact in reducing the Area Under Disease Progressive Curve (AUDPC) values for all three blast types while maintaining consistent yield. This treatment exhibited results comparable to fungicide (Tricyclazole 75% WP) sprays across trials conducted from September to December in both 2020 and 2021. Economically, the cost-benefit ratio favoured the culture composite despite its delayed onset and slower progression during disease epidemics under field conditions. The mixture of cultures demonstrated sustainable yield without requiring significant additional input costs or frequent fungicidal application in both trial periods. This suggests a promising and cost-effective approach to managing finger millet blast epidemics while maintaining yield stability in agricultural practices.

2.
Materials (Basel) ; 13(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202920

RESUMO

The current study deals with the analysis of sound absorption characteristics of foxtail millet husk powder. Noise is one the most persistent pollutants which has to be dealt seriously. Foxtail millet is a small seeded cereal cultivated across the world and its husk is less explored for its utilization in polymer composites. The husk is the outer protective covering of the seed, rich in silica and lingo-cellulose content making it suitable for sound insulation. The acoustic characterization is done for treated foxtail millet husk powder and polypropylene composite panels. The physical parameters like fiber mass content, density, and thickness of the composite panel were varied and their influence over sound absorption was mapped. The influence of porosity, airflow resistance, and tortuosity was also studied. The experimental result shows that 30-mm thick foxtail millet husk powder composite panel with 40% fiber mass content, 320 kg/m3 density showed promising sound absorption for sound frequency range above 1000 Hz. We achieved noise reduction coefficient (NRC) value of 0.54. In view to improve the performance of the panel in low-frequency range, we studied the efficiency of incorporating air gap and rigid backing material to the designed panel. We used foxtail millet husk powder panel of density 850 kg/m3 as rigid backing material with varying air gap thickness. Thus the composite of 320 kg/m3 density, 30-mm thick when provided with 35-mm air gap and backing material improved the composite's performance in sound frequency range 250 Hz to 1000 Hz. The overall sound absorption performance was improved and the NRC value and average sound absorption coefficient (SAC) were increased to 0.7 and 0.63 respectively comparable with the commercial acoustic panels made out of the synthetic fibers. We have calculated the sound absorption coefficient values using Delany and Bezlay model (D&B model) and Johnson-Champoux-Allard model (JCA model) and compared them with the measured sound absorption values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...